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ABSTRACT

FORMATION AND EVOLUTION OF BREATHERS IN A CHAIN OF
NONLINEAR COUPLED OSCILLATORS

Gucli, Hasan
M.Sc., Department of Physics

Supervisor: Prof. Dr. Sinan Bilikmen

January 2001, 93 pages.

I study the formation and evolution of chaotic breathers (CB’s) on the
Fermi-Pasta-Ulam oscillator chain with quartic nonlinearity (FPU-3 sys-
tem). Starting with most of the energy in a single high frequency mode, the
mode is found to break up on a fast time scale into a number of spatially
localized structures which, on a slower time scale, coalesce into a single
structure, a CB. On a usually longer time scale, depending strongly on the
energy, the CB gives up its energy to lower frequency modes, approaching
energy equipartition among modes. I analyze the behavior, theoretically, us-
ing an envelope approximation to the discrete chain of oscillators. For fixed
boundaries, periodic nonlinear solutions are found, which are analyzed for
linear stability. The stability analysis indicates that, for the usually nar-
row equilibrium structures, weakly unstable growth near peak amplitude
would propagate into stable regions, thus not leading to large amplitude
effects. However, broader mode initial conditions, which relax toward equi-

libria, may break up into symmetries other than that initially imposed. The

il



structures formed after the fast breakup are found to approximate the un-
derlying equilibrium. The structures undergo slow translational motions,
and an estimated time for them to coalesce into a single chaotic breather
are found to agree with the numerically determined scaling 75 oc E~'. A
previously developed theory of the decay of the CB amplitude to approach
equipartition is modified to explicitly consider the interaction of the breather
with background modes. The scaling to equipartition of T,, o F~? agrees

with the numerical scaling and gives the correct order of magnitude of T,.

Keywords: Nonlinear, Oscillator Chain, Breather, FPU, Fermi Pasta Ulam

iv



07

LINEER OLMAYAN OSILATOR DIZISINDE ESAS LOKALIZE
MODLARIN OLUSUM ve EVRIMI

Gugcli, Hasan
Yiiksek Lisans , Fizik Bolimi

Tez Yoneticisi: Prof. Dr. Sinan Bilikmen

Ocak 2001, 93 sayfa.

Bu tezde lineer olmayan dordiincii dereceden Fermi-Pasta-Ulam osilator
dizisinde (FPU-S sistemi) kaotik esas lokalize modlarmn olugum ve evrimi
incelenmigtir. Yiiksek frekanslh tek bir moda verilen enerjiyle baslatilan sis-
tem kisa bir stirede cok sayida lokalize yapiya ayrilmis, ilerleyen zamanla bu
yapilar birleserek tek bir yapiy1 , kaotik esas modu olusturmustur. Kaotik
esas mod ilk enerjiye bagh olarak modlar arasinda espaylasima giderek en-
erjisini daha diigiik frekanshh modlara vermistir. Bu davranig zarf fonksiy-
onu yaklagimi kullanilarak teorik olarak incelenmigtir. Sabit sinirlar icin li-
neer olmayan periyodik ¢coziimler bulunmus ve lineer kararlilik incelenmistir.
Kararlhilik analizi genellikle dar denge yapilar icin yiiksek genlikli kararsiz
zay1f yapinin kararh bolgeye dogru ilerledigini ve boylece yiiksek genlik etk-
isine neden olmadigini gostermistir. Bununla birlikte sistemi egpaylagima
gotiren genis ilk sartlarin daha once ongorilmemis simetrilere doniisebilecegi

gozlemlenmistir. Bu doniisiimden sonra olugan yapilarin sistemi egpaylagima



yaklagtirdigi bulunmustur. Tek bir esas lokalize mod olugum siiresinin sis-
teme ilk verilen enerjiyle ters orantili oldugu (73, oc E~1) niimerik olarak
bulunmusg ve teoriyle uyumu tartisilmistir. Esas lokalize modun egpaylagima
indirgenmesiyle ilgili daha once gelisgtirilmis bir teori, esas modun arkaplan
modlarla etkilesimi gozoniinde tutularak iyilestirilmistir. Espaylasima gidis

siiresinin ise ilk sistem enerjisinin karesiyle ters orantili oldugu gozlenmistir

(T,p o< E2).

Anahtar Kelimeler: Osilator Dizisi, Esas Lokalize Mod, FPU, Fermi Pasta

Ulam
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CHAPTER 1

INTRODUCTION

Coupled oscillator chains form good test systems for investigating energy
exchange among degrees of freedoms [1]. In particular, the Fermi-Pasta-
Ulam (FPU) system, consisting of a set of equal masses coupled to nearest
neighbors by nonlinear springs, has been extensively studied [1, 2, 3, 4, 5, 6,
7,8,9,10, 11, 14, 18, 19]. Starting with energy initially in a low frequency
mode, Fermi, Pasta, Ulam [2] observed, for low energies, that the oscillators
did not relax to the equipartition state, but displayed recurrences which
were later explained in terms of beating among the system modes [1, 3]. A
theoretical prediction of a threshold to fast equipartition by mode overlap
[4] was subsequently qualitatively confirmed by studies of energy thresholds
required to give approximate equipartition among modes [5, 6, 7]. A weaker
mechanism that also led to equipartition on a slower timescale has also been
studied [8, 9, 10]. With initial energy in a low-frequency mode, it was shown
in [9] that the resonant interaction of a few low frequency modes can lead to

local superperiod beat oscillation that is stochastic, transferring energy to



high frequency modes by diffusion. With increasing local energy, there is a
transition from exponentially slow transfer to a time scale that is inversely

proportional to a power of the energy density.

The FPU -3 system with quartic nonlinearity can be approximated,
for low-frequency mode initial conditions, by the mKDV equation, which
admits a soliton solution, that can become unstable with increasing energy
[11]. This instability roughly coincides with the creation of stochastic layers
in the beat oscillations [9]. The close connection between the development
of stochastic layers in beat oscillations and instabilities in nonlinear struc-
tures was also noted for the discretized sine-Gordon equation, consisting of
pendula coupled by linear springs [12, 13]. In [12], it was numerically found
that the breakup of a nonlinear structure, starting from a high-frequency
mode initial condition, occurred at higher energy and on a slower time scale

than from energy initially in a low-frequency mode.

A partial understanding of the increased stability came from a series of
analyses of breather-like structures on discrete systems that admitted ex-
act breather solutions [14, 15, 16, 17, 18, 19]. High frequency mode initial
conditions have symmetry of neighboring oscillators close to that of local-
ized exact breathers. The resulting dynamics consists of three stages. First

there is an initial first stage in which the mode breaks up into a number of



breather-like structures. Second, on a slower time scale, these structures co-
alesce into one large unstable structure. These structures have been called
chaotic breathers (CB) [18]. Since a single large CB closely approximates
a stable breather, the final decay stage, toward equipartition, can be very
slow. This behavior has been observed in oscillator chains approximating
the Klein-Gordon equation with various force-laws [15, 16, 17| e.g. the dis-
cretized sine-Gordon equation [17], and, more relevantly for this thesis, the
FPU-38 model [14, 18, 19]. In [14] and [18], the energy was placed in the
highest frequency mode with strict alternation of the amplitudes from one
oscillator to the next. This configuration is stable up to a particular energy
at which a parametric instability occurs, leading to the events described
above [14, 18]. However, the nonlinear evolution does not depend on spe-
cial initial conditions, but will generically evolve from any high-frequency
mode initial condition that has predominantly the alternating amplitude
symmetry [19]. One does not know, in this generic situation, whether there
exists any true energy threshold to achieve equipartition, although there ap-
pears to be some numerical evidence for such a threshold in the discretized
sine-Gordon system [12]. However, as discussed extensively with respect
to low-frequency mode initial conditions, the practical thresholds refer to
observable time scales [9, 10]. From a phase-space perspective it is intu-

itively reasonable that for a large number of oscillators and not too low an



initial energy the generic set of initial conditions will lie in a chaotic layer,
but the chaotic motion can remain close to a regular orbit for very long
times [1]. The scaling with energy density of the time to equipartition has
been estimated for high frequency initial conditions, from the interaction of
beat modes using a procedure developed to calculate the equipartition time
from low frequency initial conditions [20]. The result gave the numerically
observed scaling but strongly underestimated the time, which is at least

partially related to the transient formation of the breather [19].

Considerable insight into the behavior of a nonlinear oscillator chain,
starting from high frequency mode initial conditions, can be obtained by in-
troducing an envelope function for the displacements of the oscillators. The
initial conditions for the envelope only contain significant long wavelength
perturbations. For the envelope function an expansion is then possible to
obtain a nonlinear partial differential equation (PDE) which approximates
the behavior of the discrete system [21, 22]. Low-order expansions of this
type produce PDEs that have integrable solutions in the form of envelope
solutions, analogous to the solutions produced from low-frequency initial
conditions [21]. Higher order terms destroy the integrability, but the actual
discretized oscillator chains can have localized breather solutions which are

also integrable [16, 17]. Thus we might expect the results, obtained from



higher order expansions, to approximate breather solutions that may, how-

ever, be weakly unstable.

The envelope function expansion procedure has been applied to the FPU-
B system to explore the nonlinear long-wavelength solution, its modulation
instability, the localization into proto-breathers, and their coalescence into
a single chaotic breather [22]. These results were mainly limited to the
small-amplitude nonlinear solution, which therefore limited the range of
applicability. The initial breakup of the high frequency mode was also
calculated only for periodic boundary conditions, i.e. for the highest mode
number for which the initial envelope function is uniform. These limitations
led to results that, while qualitatively significant, do not agree quantitatively
with numerical results in the usually explored energy density ranges or with

oscillator chains with fixed ends [18, 19].

In the following chapters i first presented the basic equations of the chain
in oscillator and normal mode forms. I then used expansions to obtain the
envelope equation. Then, in Chaper III, i obtained solutions of the en-
velope equations valid for arbitrary amplitude. In Chapter IV i obtained
the approximate local dispersion for the modulation instability and com-
pare the results to numerical evolution of the discrete equations for a range

of energies and initial periodicities of the envelope. Chapter V considers



coalescence of the protobreathers that are formed in the modulational in-
stability process. In Chapter VI the mode picture of the energy transfer
mechanism is modified to specifically take into account the beating between
background low amplitude modes and the breather, to obtain an estimate

of the breather decay time.



CHAPTER 2

BASIC EQUATION AND INITTAL CONDITIONS

The Hamiltonian function of the FPU-S model of N oscillators is

N 2
b; Kh Kah
H = Z > m + o (Qi+1 - C]z’)2 + 1 (Qi+1 - qi)4 (2.1)

i=0
where K, and K,, are, respectively, the harmonic and anharmonic force
constants. This problem has fixed boundaries py = py11 =0, ¢o = qny1 =
0. Using Hamilton’s equations, the Hamiltonian yields the equations of

motion of the individual oscillators

d? qi

mes = Kn(gis1 +qio1—2¢:) + Kan[(gis1 — 0)° — (@i~ qi-1)*] i=1,2, .N

(2.2)

Introducing dimensionless variables ¢t — t/K,/m, ¢ — q\/Kau/(Kp )

expressions (2.1) and (2.2) can be rewritten in the form that corresponds

tom:Khzl.

N
1 1 15}
H = Z 5 p? + 5 (Qi+1 - %’)2 + Z (qi+1 — q¢)4] (2.3)
1=0

d? qi

gz i +qi—2¢+Bl(gi1—q) — (g —qi1)?] i=1,2 ..N (2.4)



The dimensionless factor 3 is introduced to write (2.3) and (2.4) in a stan-
dard form which is traditionally used in publications for the FPU-3 model.
I choose 8 = 0.1 to correspond to previous papers and thus facilitate com-
parison with the results of other studies. The choice of 3 rescales the dimen-
sionless variables such that the energy of the system and, correspondingly,
the Hamiltonian are measured in the units of K} /K,

The Hamiltonian function (2.3) consists of quadratic part H, which de-
scribes the harmonic oscillations and anharmonic quartic potential, H,p,
which is proportional to . With the help of a canonical transformation H,

can be presented in the form of N independent normal modes P;, @);

Q. \1/2 N
Q- (%) X sinlkida (2.)
9 1/2 N
P; = (W) Z sin(k i j) p; (2.6)

such that the linear part of the Hamiltonian becomes

Hy,=> Z2(P*+Q;" (2.7)

=1

Q;
2
where

1
), = 2 sin <§kj>, k=n/(N+1), j=12..N (28)

The reverse transformation is

B ) 1/2 N . o Q
4 = (m) ' sin(k '7)9 ’ (2.9)




9 1/2 N
P = <N7+1> Z sin(k i 7) Q;'/% P (2.10)

Index 7 is used for functions describing oscillators while j is used to label
the variables related to the normal modes. Transformations (2.9),(2.10)
automatically satisfy boundary conditions py = pyi1 = ¢ = gns1 = 0
which are kept fixed.

For numerical integration initial conditions are usually chosen such that
at t = 0 only one normal mode is excited. If there were no nonlinear
interaction between the normal modes the energy would be localized in this
initially excited mode forever. However, due to anharmonic coupling the
energy transfers throughout the spectrum. The purpose of this thesis is
to examine the main physical mechanisms that partake in the processes of
energy transfer.

In order to excite specifically one normal mode with the frequency (2,
the displacements of the oscillators and their momenta are chosen at t = 0
in accordance with (2.9), (2.10). The total energy E is shared between
kinetic and potential parts of (2.7) such that a fraction f is delivered to the
kinetic energy PVQ(O) =2 f E/ Q, while the rest of the energy is placed in

the potential energy,

Q2(0) = <\/245E 1f)(N+1)+(N+1)2N1) (2.11)

B GBQ

Expression (2.11) is calculated with the help of (2.3) and takes into



account the anharmonic term not included in (2.7). Correspondingly, the

initial displacements and velocities of the oscillators are as follows:

§(0) =p;(0) = (%)UQ(—UM sin (;:”1) (2.13)

[ will mostly treat the case N = 128 with initially excited mode v = 120;
however, other variants with different values of N, v are also considered. I
principally examine cases with v in the upper part of the spectrum so that
n = N+1—-v << N+ 1. Note that for these cases the characteristic
times of the initially excited modes correspond to a period T' ~ 7, e.g. the
frequency 2199 ~ 2. In numerical calculations a small fraction of the total
energy (10 percent) is usually placed into two satellites v — 1 and v + 1 to
speed up the initial phase of the relaxation; however, this does not play an
important role in long term behavior of the system.

The main parameter which defines the rates of the different stages of
relaxation is the specific energy per oscillator E/N. For an intuitive under-
standing of this statement one can introduce new dimensionless functions

¢; — q/q where ¢ = \/E/(N + 1). This leads to a slightly modified set of

equations (2.4) with renormalized f — [ E/(N + 1) ] which leaves the

10



R.H.S. of the new initial conditions for ¢;(0) and dg;/dt(0) independent of
E/N and ranged between -1 and 1 for all possible values of N. Although
a dependence on N still exists in the initial conditions it apparently be-
comes rather weak for large N such that the main parameter which defines
the time scales of the relaxation explicitly depends on the specific initial
energy per oscillator F//N. This general behavior was confirmed in the nu-
merical calculations performed for different £/N and N [18, 19] . These
calculations demonstrated that the long-term dynamics of relaxation was
essentially independent of N for N 2 100.

A typical profile of initial displacements (2.12) is shown in Fig. 2.1 for
the case £ = 50, f = 0, v = 120, exhibiting the fast variations of ¢; from one
oscillator to another characteristic of high v modes. As in previous studies
[21, 22|, to remove this fast variations i introduce the envelope function
Vi(t) = (=1)* ¢i(t) which is a slowly varying function of the number i.
The profile of the complete envelope function corresponding to Fig. 2.1 is
illustrated in Fig. 2.2. The smooth spatial profile of ¢) makes possible the
use of a continuous approximation where the oscillators are described by the
continuous variable x = a7, where a is the lattice period. Taylor’s expansion

then gives

U@ £ a) = ¥(2) + b () (£a) + (1/2)ts(2) a® +

(1/6)thusa(2)(£0)* + (1/24) hrpua() a* + .. (2.14)

11
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Figure 2.1: Initial displacements ¢; for the first 30 oscillators (i = 1, 2 ...30)
out of N =128 in the case £ =50, v =120, n=N+1—~=9. The mode
has the symmetry that left and right oscillators (with respect to the central
one) have displacements of almost equal amplitude but opposite sign.

Substituting (2.14) in (2.4 ) and collecting terms proportional to the differ-

ent powers of a yields

Yu+4p + 16 BY° +a® { Yo + B (120 Y2 + 12 9%,,)} +

a* { (1/12) Yupae + B (3 02 Ve + 3002, + 40sthpzs + ¥ Vugws)t + ... =0

(2.15)

where subscripts ¢ and z stand for temporal and spatial derivatives of
Y(x,t). Linear terms with spatial derivatives describe the dispersion (de-

pendence of €2 on effective wave number 7j/(N + 1) in (2.8)). Nonlinear

12
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Figure 2.2: The plot of the envelope function 1; = (—1)%g;(0) at initial time
t=0, N =128, v=120. Nine extrema correspond ton =N +1—~v = 9.
The smooth decrease of 1; from left to right results from the fact that in
numerical simulations a small amount of energy (~ 10%) was placed in two
nearest neighbor modes v = 119 and v = 121.

terms produce a frequency shift, which drives a process of steepening of
the envelope function and formation of localized states (CB’s), while the ef-
fect of dispersion leads to the opposite process of flattening of the envelope
function. This qualitatively explains why relaxation is accompanied by the
formation of sharply localized states if energy is initially deposited in the
high frequency part of the spectrum where the effect of dispersion is small,
while only broad nonlinear structures are formed if the energy is initially in

the low frequency modes where the dispersion is large.
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CHAPTER 3

SOLUTIONS FOR THE ENVELOPE FUNCTION

In (2.15), neglecting the terms with af

or higher | introducing the dimen-
sionless variable z — z/a (0 <z < N +1) and assuming a monochromatic

dependence ¢(x,t) = ¢(x) cosw t leads to an equation for ¢(z) ( where w

plays role of the eigenvalue)

(—~w? +4) ¢ + Y + B(12¢° + 9P Y2 + 9¢P%,) +

(3.1)

where i have used cos® w t = (3/4) cosw t + (1/4) cos3 w t with terms
proportional to cos3 w t ignored [21, 22]. This is also known as rotating
wave approximation (RWA). Neglecting terms proportional to § yields a

linear equation for the eigenmodes:

Solving this equation for ¢(z) with zero boundary conditions at = = 0 and

x = N+1 gives N eigenmodes which correspond to the high frequency linear
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normal modes of the discrete FPU chain

() = Y, sing, @ (3.3)

T(N+1—-v) 7n
N+1  N+1

w' = 4—q, g = (3.4)

where n = N+1—v < N+ 1 and ¢y, = Ymas, n - Superscript (0) is
introduced to indicate that (3.3) is a solution to the linearized equation
(3.2).

The reduced (with all terms of order a' dropped) nonlinear equation
(3.1) has exact analytical solutions, ¢(x), which are periodic functions of .
A subset of these solutions have ¢ = 0 at x = 0, N + 1. These solutions are
a natural generalization of the linear solutions, for the case when nonlinear
effects are important. These envelope functions have the same spatial peri-
odicity as the corresponding linear modes (3.3). However, their profiles are
not harmonic functions of x and the frequency of oscillations has a nonlinear
shift. Note that the third (and higher) harmonics of w, which are excluded
from consideration due to the RWA, leads to nonharmonic time dependence
of ¢(x,t). Multiplying (3.1) by ., and integrating over z= yields a first

integral

(~w?+4)¢? + ¥, + B(6Y + 99Tyl =0, (3.5)

where all terms of order a* have been dropped.

15



This function describes a family of solutions which depends on two pa-
rameters, C and w. Equation (3.5) has been examined in the special case
where C is chosen such that ¢, = 0 at ¢ = Ve, and ¥ = Uy, [22]. 1
consider more general cases assuming that ¢, = 0 at ¥ = 1,,,, but not
using the second condition that ¢, = 0 at ¢» = ¥, (see, for example
solution (3.3) for n = 1). Assuming that ¢(z) is normalized to the maxi-
mum value v, = Y42, and introducing, correspondingly, a new function
f(z) = ¢¥(x) /1y, one can rewrite 3.5 in a form which is similar to the energy

conservation law for a unit mass particle in an external potential U(f)
— + U(f)=0 (3.6)

where f,” plays role of kinetic energy while the potential energy is

38— (L + O
1+ 95 var)

U(f) = (3.7)

and the total energy is zero. In transforming from (3.5),(3.6) to (3.7) the
relation f, = 0 at f = 1 was used and a new constant Cy, = ( 4 — w? +
6 32 ) / 68 1?2 was introduced, replacing C; = 6 S} C,. The graphs of
U(f) are illustrated in Fig. 3.1. for three different values of the constant Cy
(Cy = —0.9, 0, 0.9). Intersections of these graphs with the horizontal line
E = 0 show that in the case of positive Cy (for example, Cy = 0.9) solutions
Y(x) are oscillating functions of x which vary between minimum —1,, and

maximum ¢, values. Cy = 0 corresponds to the special separatrix solution
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which is represented by the single localized wave (soliton, breather) with

Y(z) — 0 at x — +oo and frequency

wy =4+6 B Y2 (3.8)

Figure 3.1: Graphs of the effective potential energy U(f) as a function of
f,0< f <1, for three values of the constant of integration Cs.

In the third case of negative Cy solutions t(z) are varying between
two nonzero positive/negative boundaries 1., and ,,;,, with frequency
w?=4+46 0 (Y2, +12,.). This third family of solutions is related to the
case of periodic nonzero boundary conditions, ¢; = ¢y, mentioned above.

In particular, when Cy, — — 1, it represents so called 7 - mode when each

single oscillator is involved in coherent motion where its two neighbors have
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opposite phases and equal amplitudes and, correspondingly, the envelope
function ¥ = Y00 = Yimin = Y. In this case the nonlinear frequency shift

reaches a maximum value
w? = 4412 B2, (3.9)

which can be easily obtained from (2.4) by keeping ¢;11 = ¢; 1 = —¢;-

In order to satisfy boundary conditions of fixed zero displacements at
x = 0and x = N + 1 the first case (positive () is required since it is
the only one which periodically passes though the point where v» = 0. The

spatial period of these oscillations is given by

/01 df (%)1 — A/4 (3.10)

Zero boundary condition at x = N + 1 is automatically satisfied if the half
wave length A/2 is a solution to the equation (A/2) n = N + 1, where n is
integer (n = 1, 2...N) and related to v, as n = N + 1 — . The dispersion
relation (3.10) determines the spectrum of the frequencies w as a function
of n and t,,. Substituting f, from (3.6) in (3.10) and using a new variable

sina = f, (3.10) can be written in the form

/2 2 gin? o)\ 2 2
I(T,wm)zg/o/da (1+9me si a) ~ \/6[3@&,%1 <N+1>

T sina + r? ™

(3.11)
where i have substituted \/4 = (N + 1)/(2n) on the R.H.S. The factor

r?=0Cy=(4—w?+6 92 ) /66 1?2 has been introduced as a positive
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quantity to provide convergence of the integral and, thus, to satisfy the

boundary conditions. The parameter w(n,,,) on the R.H.S. of (3.11)

N 1>2 (3.12)

win, ) =68 02, (
™
gives the relative effect of the nonlinear frequency shift of a given normal
mode of integer n, with respect to the linear frequency shift of that mode
from the upper frequency bound. This factor plays an important role in
nonlinear wave dynamics, describing the relationship between linear disper-
sion and nonlinear effects. The balance of these mechanisms leads to the
spontaneous formation of transient self-consistent localized structures with
w ~ 1, which are observed in almost all numerical simulations.
The limiting case of weak nonlinearity corresponds to values of w < 1.
This smallness can be balanced by the integral in the L.H.S. if r — oo.
Simplifying the integrand in this limit, I(r,,,) — 1/r, yields a discrete

spectrum of eigenfrequencies of the linear problem

2,2
9 T™n

where the small nonlinear correction 6 3 12 is added to the linear case
(3.4).

In the opposite limiting case, w(n, ¢,) > 1, one should solve the dis-
persion relation for the R.H.S. of (3.11) much greater than one. This can

be balanced by the L.H.S. if r < 1. Asymptoticly expanding the L.H.S. for
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r — 0 yields a logarithmic dependence on r in the leading approximation

which describes the dependence on 1, (see, Appendix A)

1 16 6\/BYn 982,
I(r, Ymaz) — p In (7"2 07 95¢3n)> + - arcsin m (3.14)

Solving (3.11) for w yields the spectrum of the eigenfrequencies valid in the

case of strong nonlinearity

, , 16 — (N +1 , 9812,
w, = 4+68,, {1 - mexp {\/Gﬂlbm (7: — V6 arcsin %)} }

(3.15)
The factor 72 is given by the second term in curly brackets. It is exponen-
tially small, r? oc exp(—w/7), in the strongly nonlinear case, w > 1. The
spatial profiles of the nonlinear eigenfunctions ¢ (z) are determined by the
integral of (3.6), (3.7), having an upper limit given by arcsin(¢/v,,) and
zero boundary condition at = 0 while the second zero boundary condition

at © = N + 1 is satisfied automatically since w,, is the eigenvalue given by

the relation (3.11).

(¢

1 arcsin(y/Ym) (1 + 9 B 42 sin’a
/ do

)= [6 3 42, 0 sinfa + 12

1/2
) 0<z<A/M4
(3.16)
Equation (3.16) defines ¢(z) in 0 < x < A/4. It is symmetrically continued
from A/4 to A/2, then antisymmetrically reflected from A/2 to A, and then
periodically continued over the entire chain. The resulting graphs of v, (z)

are plotted in Figs. 3.2 and 3.3 together with the profiles of equivalent linear
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modes (3.3) for typical values N =128 n =9, = 0.1 and two amplitudes
U, = 0.45 and 9, = 1.85, respectively. These values correspond to weak
and strong nonlinearity, w(9,%,,) ~ 3 and w(9,¢,,) ~ 50, respectively.
The linear profiles (3.3) are used for initial conditions. In the process of
relaxation these initial profiles might be expected to approach the equivalent
envelope solutions (3.16) of the same periodicity and total energy. Due
to conservation of energy the amplitudes of the envelope solutions (3.16)
are higher than the initial values. In the weakly nonlinear case 3.2 the
difference is small, while in the strongly nonlinear case 3.3 the difference
is large because the nonlinear peaks are much narrower than the initial
sinusoidal profiles. Numerical calculations presented in the next chapter
show that due to a modulation instability the periodicity is broken in the
process of relaxation such that the only link between initial and final states

is the conservation of energy.

The periodic envelope solution (3.16) with n = 1 looks similar to the
single breather in an infinitively long chain, which is obtained from (3.16) in
the limit N — oo. Putting r = 0 and rearranging the limits of integration

in accordance with zero boundary conditions at infinity, yields

1 /2 da
(f) = —F/— 1 9 2 sin®a)'/? 0<x <
o) /6 8 ¥2, ./arcsinf sina( + 90 ¢, sin"a) SsEee

(3.17)
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Figure 3.2: Comparison of the weakly nonlinear envelope solution (3.16)
(solid line) with the equivalent profile of the normal mode (3.3) (dashed
line) with energy E = 20 and symmetry n = 9. Since the factor w ~ 3 is
not too large , the curves are close to each other.

For the low amplitude case, 96?2 < 1, integral (3.17) is simplified giving

V(@) = G cosh (/6 B ¢ @) (3.18)

while in the large amplitude case, 9892 > 1, (3.17) describes, asymptoti-

cally, the breather of finite width d ~ 5 (five oscillators)

Yp(r) = tm cos\/g x — n\/g <z < W\/g (3.19)

The energy of the envelope solutions is given by equation (B.4). The first

two terms are calculated at the boundaries and cancel each other because of
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Figure 3.3: Comparison of the strongly nonlinear envelope solution (3.16)
(solid line) with the equivalent profile of the normal mode (3.3) (dashed
line) at energy F = 200 and symmetry n = 9. The large value of w ~ 50
makes the curves significantly different.

the spatial periodicity of the modes. The last three terms in the integrand

are ignored because they originate from terms of a* order in equation 2.15

which are not considered. Substituting (3.5), (3.6) into (B.4), expressing
2

w? in terms of r? and transforming the variable of integration as in (3.11)

yields an expression for the energy

E =

2n¢m/ﬂ/2d 1 + 9842 sin®a 1/ y
o
V65 Jo sinfa + 12

X ((3 B ?sinta + 2 sin®a — g B Y2 7"2) (3.20)
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The integral in (3.20) is simplified and calculated analytically in two
limiting cases. If 1), is sufficiently high that, w(n, ¢,,) > 1, nonlinear effects
are dominant in comparison with the effect of dispersion and according to
(3.11), r — 0. Substituting » = 0 in (3.20) the integral is calculated exactly
and defines a function Z(y) with y = 3 1?2. The explicit expression for Z(y)
is given by (B.5),(B.6). This function can be further simplified in the limits
of y >> 1 and y << 1 which we call, respectively, large and small amplitude
nonlinear envelopes. In the first subcase the asymptotic expansion of Z(y)

yields

96, 2 5 ;
E_T(wmwwm>a 1 <4/6 5 4y, (3.21)

where the 1? term is the next order correction to the leading ¢} term. In
this large amplitude regime energy is mostly due to the quartic § term in the
potential energy (2.3). The envelope function and energy are concentrated
in n narrow periodically distributed peaks each consisting of 4-5 oscillators
while in wide areas between the peaks oscillations are exponentially small.

In the second subcase of small amplitude, the leading terms in the ex-

pansion of Z(y) yield

_4n

E m(wmﬂﬁwi) mn/(N+1)</68¢2 <1  (3.22)

where the 2 term is a correction to the leading, ¢, term. The energy

is mostly due to the quadratic term in the potential energy (2.3). It is
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also localized in n periodically distributed peaks but the width of the peaks
and, correspondingly, the number of oscillators in each of them are inversely
proportional to ,,. This results in the linear dependence on 1, in (3.22).

If the amplitude v, is sufficiently low that m < /(N +1)
the oscillations become nearly linear. As in obtaining (3.13) the factor r is
now much greater than one and integral (3.20) can be calculated in the limit
r — oo by ignoring the term sin v in comparison with r in the denominator.

Expression (3.20) yields

E m2n?

N+1:w;<1—m> m<<7rn/(N+1)<<1 (3.23)

The quadratic energy dependence on 1, again results from the quadratic
term in the potential energy (2.3) with a maximum value of 2 1?2, in a single
oscillator, and a factor of 1/2 is introduced from the nonuniform profile of
the envelope function. This regime is equivalent to the discreet normal mode
solution, which represents initial conditions used in numerical calculations

in the case when all energy is placed at ¢ = 0 in the potential energy.
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CHAPTER 4

FAST EVOLUTION FROM INITIAL STATES

For most numerical studies of oscillator chains the initial state imposed on
the system is that of a single linear mode. This state is generally not close to
an equilibrium. The initial state rapidly relaxes, governed by the nonlinear
equations. The evolution may be influenced by the underlying stability of
nearby equilibria, but cannot be analyzed directly as perturbations around
those equilibria. It is also possible to prepare the initial conditions to be
close to an equilibrium and consequently to directly analyze linear stability.
I therefore study both the linear stability of the envelope solutions with
respect to small perturbations, d1¢;(z) << v;(x), and the relaxation from a

remote initial state (2.12), (2.13) to nonlinear envelope solutions (3.16).

For analysis of non-stationary envelopes, which describe relaxation, in-
stability, or breather translational motion, it is convenient to rewrite the
basic equation (2.15) in the form of two coupled equations for amplitude

q(z,t) and phase ¢(x,t) which are related to ¢ (z,t) as

W(x,t) =q(x, t) cos(wt + ¢(x,t)) (4.1)
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Substituting (4.1) in (2.15) and collecting terms proportional to sin(wt +
é(x, 1)) and cos(wt+¢(z, 1)) leads to coupled equations for the phase ¢(z, 1)

and amplidute g(z,t)
q¢tt + 2 Qt(w + ¢t) + 2 Qx¢x + Q¢zz + 12 6q2Qx¢x + 3 5q2¢xx =0 (42)

G — W+ 01)’q+4 ¢+ quw — g2 +12 B¢ +9 Ba(qqs). — 6 B’ P2 = 0 (4.3)

4.1 Linear Analysis Of Stability

Envelope solutions are fast oscillating functions of time which are sub-
ject to parametric (modulation) instability. The instability is driven by
the periodic variation of the frequency, which appears in the linear equa-
tion for a perturbation, due to the nonlinear frequency shift caused by the
unperturbed envelope solution. For the usually applied modal initial condi-
tions unstable breakup of modes are observed [18, 19]. However, numerical
calculations show that the nonlinear stage of this instability leads to the for-
mation of long living self-organized localized structures, chaotic breathers,
which appear to be marginally stable with respect to a fast modulation in-
stability. By investigating the stability of nonlinear equilibria i will improve
our understanding of the mechanism by which they are stabilized. Although
i am examining periodic equilibria (3.16), i will put significant attention to
the limiting case, w = oo ,r = 0 that corresponds to a single breather in an

infinitivly long chain of oscillators (N — 00).
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A second problem is concerned with the question how many breathers
appear after the relatively short time of nonlinear relaxation from the ini-
tial state. In this context my problem with fixed zero boundary conditions
is significantly different from the usually applied m-mode initial values for
periodic boundary conditions. In the periodic case the m-mode is simulta-
neously a normal mode of the linear problem and an exact solution to the
nonlinear envelope equation (3.16). Relaxation from this equilibrium state
is initiated by a modulation instability, and the wavelength of the fastest
growing mode is used to estimate the number of breathers generated during

the nonlinear phase of instability.

In the case of zero boundary conditions, high frequency normal modes
(2.12), (2.13) do not satisfy the nonlinear envelope equation (3.5). When
used as initial conditions they relax toward or around a few nearest sta-
ble equilibrium solutions (3.16) at ¢ > 0. I expect that the linear analysis
could, at best, only qualitatively describe the evolution of the system. Nev-
ertheless, as we shall see, the linear analysis, in combination with numerical
results, is quite useful for understanding evolution and quasistability of

strongly nonlinear structures.

Comparing (4.1) to the unperturbed envelope solution ¢(x, t) = 1 (z) cos wt,
we see that the unperturbed phase is equal to zero, ¢y = 0, while the unper-

turbed amplitude is qo(z) = ¥(x). The frequency w is a constant given by
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(3.8) and determined by the amplitude of the unperturbed solution. When
the amplitude is slightly varied, q(z,t) = ¥(z) + dq(z,t), the frequency of
the fast nonlinear oscillation is also varied. As w is taken to be constant
this effect is represented by the time-varying phase, ¢(z,t) = d¢(x,t). This
phase difference can accumulate leading to large values of d¢(x, t). However,
since equation (4.2) depends on derivatives of d¢(x, ¢) but not the phase by
itself, it can be linearized by considering the derivatives of d¢(x,t) as first

order corrections. This yields a system of two coupled linear equations

203q; + 1 0 + 2 1y (1+669%) 0y + b (143 BY) 6¢se =0 (4.4)

S+ ((1498Y?) 8¢y )n+ (4 — w4369 + 18811, +98Y2) 6g—2wipdg, = 0

(4.5)

I first consider the simplest case of constant spatial profile of the envelope
Y(z,t) = 1, cos wt, which corresponds to m-mode with periodic boundary
conditions, which has the highest nonlinear frequency shift (3.9) [22, 23].
This mode is a solution to (3.5) but does not belong to our envelope solutions
because zero boundary conditons are not satisfied in this case. Setting the
spatial derivatives of 1)(x) equal to zero, (4.4) and (4.5) reduce to a system of
coupled equations for d¢(x,t) and dg(z,t) with constant coefficients. They

can be solved by letting dq(z,t) oc d¢p(x,t) o< exp(st + i k x) which gives a
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biqudratic equation for s:

s*+2[36 y+8—Kk*(1+6y)] s> =k* (1 + 3y) [24y—k* (1+9y)] (4.6)

where y = (4?2 as defined in Chapter III.
Among the four roots of (4.6) there is an unstable solution for which

Re s is positive in two intervals of k. These intervals are; for small k,

k< 24y /(1+9y) . A > 2m/(1+9y)/24y, and for large k, k >
2, A < m. The second interval, is beyond the validity of the continuous
approximation so i will not consider it. At long wavelength, A must be
apriort less than N + 1 in order to satisfy periodic boundary conditions.

Using these inequalities, 2my/(14+9 y)/24y < A < N +1, one can conclude

that there is a threshold for the modulation instability of the m-mode

(N +1)?
71-2

6 8 2 >1 (4.7)

Near this threshold the factor 9 y < 1 and has therefore been dropped.
Expression (4.7) shows that the 7m-mode is parametrically unstable if the
nonlinear parameter (3.12), for n = 1, is greater than one. If (4.7) is
satisfied, there is a most unstable wavenumber k,,, which corresponds to the
maximum of the growth rate, s,,. In the limit of small f,,, y < 1, the values

of k,, and s, were found in [22]

km = 126 wm; Sm = 35¢3n (48)
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However, i am mainly interested in the cases of intermediate and large
amplitude envelopes. In order to analyze these regimes all terms following
from (3.11) are included in (4.6). In the limit of large amplitudes, y > 1,

the fastest growing mode has wavenumber and maximum growth rate

ki = 1.23, 5m = 0.93 /B ¥ (4.9)

In contrast to the case of the low amplitude results in (4.8), k,, is inde-
pendent of the amplitude and s, is a linear function of v,,. Note that the
transition from small to large amplitude takes place at 3 1?2 ~ 1/9 that
corresponds, for § = 0.1, to ¢, >~ 1.

The modulation instability of the envelope solutions obtained in Chapter
I1I requires a more complicated analysis because the unperturbed functions
() lead to z-dependent terms in (4.4) and (4.5). Full analysis of the
problem can be done on the basis of eigenfunctions satisfying zero boundary
conditions. I limit my study to instability of nonuniform envelope solutions
with respect to short wavelength perturbations which most generally have

the form

dp(x,t), oq(x,t) ocexp(s t+i /0nlc k(z") dx") (4.10)

with k& > ¢, /1, k? > ,,/1, which gives a qualitative understanding of
the effect of spatial variations. I examine the local stability of the envelope

solutions assuming that the perturbations 4.9 are localized in some area
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of width D, k™! <« D < d, where d~' ~ 1), /1 is a typical scale of the
unperturbed solution, and form a wave packet with central wave number
k. The growth rate s is then calculated as a function of x and k. The
result indicates what parts of the envelope profile () are locally stable
or unstable and therefore where the instability can occur dependending on
the local position of the wave packet in x and the local values of k. This
approach does not take into account the boundary conditions and it is valid
if the wave packet group velocity vy, is small enough, so that v, /s < d.
Following this program i analyze the stability of a single breather in the
limit of small, amplitude, 9 y << 1, and large amplitude, 9y >> 1, using,

respectively, approximations (3.18 ) or (3.19).

For low amplitude from (4.8) for the m-mode i have only values of 1,
such that s is small compared to the frequency w > 2 of the breather.
These slowly varying perturbations can be treated on the basis of a reduced
form of equations (4.4) and (4.5) with the terms d¢y and d¢gy ignored.
Moreover, as can be shown from (3.6),(3.7) the terms proportional to 2
and 1), are proportional to 63t} and therefore small in comparison with
Y?(x) and can be neglected. Among the small perturbation terms i will
keep the two terms proportional to d¢, and d¢, because they introduce an
imaginary contribution to the dispersion relation. Substituting the WKB

presentation (4.10) into (4.4), (4.5) and introducing, for the low amplitude

32



case, normalizations k; — k / (6 B ¢2)Y%, 51 — s / 6 B 4?2, allows us to

express the growth rate in the form

1

s3(k1,x) = T

(k2 =20 kiJ680uffs) (617 —1—k2+3i knJ650,f f)
(4.11)
where f(z) = ¢¥(x)/¢,. At 2 = 0, which corresponds to the peak of the
breather, the growth rate, Re sy, is positive for k? < 6f(0)* —1 = 5. In this
case the unstable values of k; < 2.24 are small and are also out of the range
of applicability of WKB approximation, k; >> 1. Note that this situation
is essentially different from the case of the m-mode envelope where solutions
of the form (4.10) are valid at any k£ compatible with the periodic boundary
conditions (but still, of course, subject to discreteness limitations).

Small imaginary terms in (4.11) may drive a slow instability with the
growth rate, Re s; ~ (63¢?2)? for values of z where f, # 0. To illustrate
this situation the imaginary and real parts of s; are plotted as a function
of ki, in Fig. 4.1 at the point where f, is maximum f{™®) = (63)'/?4),,/2
and f = 2-/2. This slow growing mode with s; ~ 0.1 exists in the range
of wavelengths where both WKB and continuous approximations can be
valid. These two conditions can be satisfied simultaneously in the case of
low amplitude while at high amplitudes it is impossible. Although at short
wavelengths the mode is locally unstable there is an additional effect which

slows down its growth and may stabilize it. The effect is the convection
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of the wave packet in (z, k) space due to explicit dependence of s on x
and k. This process is described by the equations © = 0lm s/0k, k=
—0lm s/0z. As it is seen in Fig. 4.1 the value of Im s is large compared to
the growth rate, for k&, 2 1.5 resulting in a fast drift of the packet away
from unstable zone to the tail zone where the driving force of instability
fz is small. Furthemore, for k; < 1, where Im s <Re s, we have already
seen the WKB approximation fails. The conclusion is that the WKB theory

gives no clear evidence that a small amplitude breather is unstable.

Figure 4.1: Dependence of the normalized growth rate, Re s; (solid line)
and Im s; (dashed line) on the wave number k;, for the case of a small
amplitude breather.

A similar situation occurs in the case of high amplitudes, 9 f¢?2, >> 1.

34



Making use of the the analogy with the large amplitude m-mode results in
3.2 one can expect that in this case the typical values of s are of the order
of w ~ /661, so all time derivative terms in (4.2) (4.3) are important. It

leads to coupled equations

259 0q+1p (s2+2ikffo— (1/2) k> f2)0p=0 (4.12)

(3430 kffo+6F2+3Ffot (3/2)f2— 1= (3/2)K2F?) Sq—2 55 ¥ 66 = 0
(4.13)

where w is substituted with its limiting value w — /6 S, and s is nor-
malized as, s, = s / (6 3 12,)"/? while the wave vector k is not normalized.
Solving equations (4.12),(4.13) for sy, gives four branches of sy (z, k).

I will illustrate these results for the most unstable solution. Calculating

sy (x, k) at the peak of the breather, x = 0, yields

sy (k) = (1/2)1/2\/2 k2 — 74+ kY — 22k2 4 49 (4.14)

The real and imaginary parts of this solution are shown as a function of
k in Fig. 4.2. Although the results indicate a fast instability for a large
amplitude breather, the intervals of unstable £ are out of the range of ap-
plicability of WKB theory or of the envelope approximation. The long

wavelength branch of the instability with £ < 1.4, is not consistent with
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the WKB approximation while for the branch with £ > 1.6 the wavelength
of perturbations becomes comparable with the distance between oscillators.
Solutions with £ > 7 would not be allowed due to the discreteness of the
chain. The second derivative term, .., contributes to the stability at max-
imum amplitude while destabilazing first derivative terms are small. In the
zone where f, is maximum and, correspondingly, f,, is small, similar to
the low amplitude case, these areas can be a source of residual instability,

generating waves which then rapidly drift away from the unstable zone.

So

Figure 4.2: Dependence of the normalized growth rate, Re sy (solid line)
and frequency, Im sy (dashed line) on the wave number k around the peak
of a large amplitude breather.

One qualitatively concludes that stationary solutions for both low and
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high amplitude breathers are such that the width of their profiles is com-
parable with the most unstable wave lengths (4.8) (4.9), which strongly

enhances their stability.

4.2 Numerical Observations Of Relaxation Oscillations And Symmetry

Breakup

Since the convective character of the instability and restrictions caused
by the conditions of applicability make WKB analysis quite complicated,
numerical analysis is important for verifying my qualitative conclusions.
The numerical treatment of stability is based on integration of the 128
equations of motion (2.4) for a 128 oscillator chain, with initial conditions
q;(0) = qZ(B) + dg;, p;(0) = 0. Functions qi(B) describe the unperturbed
breather profile and they were chosen either from the continuous model in
the form of approximation (3.18) for ¢, < 1 or as a breather solution of
the discrete FPU model for v, > 1. Low and high amplitide initial profiles
were centered in the middle of the chain at © = 64.5. Large amplitude
initial profiles obtained from the discrete FPU problem were treated sepa-
retely for symmetric and antisymmetric configurations. In all cases small
(~ 10% ) perturbations with the wave length of the fastest growing mode

from (4.8) or (4.9) were added at ¢ = 0 to speed up the instability. The time

of integration was chosen to be 10 times longer then the inverse growth rate
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of the slowest unstable WKB mode considered above which from (4.11) and
the normalization scales as (6312) 2. Results of these calculations show
no significant time variations of the initial profiles over a wide range of am-
plitudes, 0.1 < ¢, < 10. In the case of large amplitudes a rather sudden
decay of the symmetric breather was observed after a time which was signif-
icantly longer than the times above, so i will not discuss the phenomenon in
this chapter. For antisymmetric configurations this effect was not observed.
These numerical results confirm stability of the nonlinear envelope solutions
(3.16) with n = 1. A single breather in an infinite system has a shape sim-
ilar to envelope solutions (3.16) with n = 1, in the case of high amplitudes,
w(n,y,) >> 1, and would also be expected to be stable. In the low am-
plitude limit, w(n, 1,,) < 1, the inequality is equivalent to the condition of
stability of the m-mode (4.7) such that the breather would also be stable.
The envelope solutions (3.16) with higher numbers of n, n = 2, 3...., consist
of n peaks whose profiles are similar to single breathers if w(n, ¥,,) >> 1
and n is not too high (n < 25 — 30). Thus, one can expect stability of the
peaks with respect to short wavelength perturbations of their shape. For
long wavelength perturbations, a new effect appears when the number of
peaks per wavelength is significantly larger than one. In this case pertur-

bations effectively feel the averaged ( over z ) value of the coefficients in

38



equations (4.4),(4.5). This results in a long wavelength modulation insta-
bility, as described by equation (4.6) for the w-mode, but with avaraged
values of f?. The long wavelength perturbations do not change the shape
of individual peaks but lead to the modulation of the peak amplitudes. In
this case a modulation instability similar to the instability of the m-mode
can be observed in my problem with zero boundary conditions. This long
wavelength instability is illustrated in Fig. 4.3 and Fig. 4.4 where the en-
ergies of oscillators e; are plotted for n = 16 and two initial conditions,
E =5, =02)and E = 20 (¢, = 0.4), at t = 11800 s and ¢ = 3500 s,
respectively. Growing perturbations of initially equal amplitudes with the
wavelength A = 64 and A\ = 32 are well described by the theory of the fastest
growing mode (4.6) if averaging is taken into account by reducing their am-
plitudes to 1, = 0.1 and 7, = 0.2. In these cases the nonlinear factor
w(n,¥y,) = 0.4, 0.8 so the peaks are not well isolated from each other. The
global interaction gives rise to a long wavelength modulation instability. In
similar calculations at E' = 200, corresponding to value of w(n,,) ~ 2,
where the peaks are well localized and noninteracting, an instability was
not observed. Combining analytical and numerical results one predicts that
the nonlinear envelope solutions are stable to the modulational instability

in the range of parameters where the nonlinear factor w(n, ,,) > 1.
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Figure 4.3: Dynamics of the modulational instability of the periodic equi-
librium with many peaks (n > 1). The curves show the profile of the
normalized oscillator energies e; versus ¢ at a time when a long wavelength
modulational instability is visible. £ = 5,n = 16, = 11800 s; the estimate
of the most unstable wavelength, \,, = 64, is in a good agreement with the
observed wavelength.

Since the initial conditions of much numerical work are taken to be nor-
mal modes of the linear problem they are different from nonlinear envelope
solutions at the same energy. Normal modes are wider and, therefore, their
amplitudes, ¢);, are less than the amplitudes of corresponding nonlinear so-
lutions, ,,. If the value of the difference Ay = 1, — 1; is not too large,

A /1y, < 0.4, a relaxation takes place in the form of regular oscillations
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Figure 4.4: Dynamics of the modulational instability of the periodic equi-
librium with many peaks (n > 1). The curves show the profile of the
normalized oscillator energies e; versus ¢ at a time when a long wavelength
modulational instability is visible. £ = 20, n = 16,7 = 3500 s; the estimate
of the most unstable wavelength, A\, = 32, is in a good agreement with the
observed wavelengh.

of ¢(x,t) around the equlibrium solution of the same symmetry of ampli-
tude Avy. If Ay is large, then the relaxation follows another scenario in
which 1 (x, t) oscillates around an envelope solution of a different symmetry
with higher values of n. This process is more favorable because the equi-
librium amplitude of an envelope solution with a higher value of n is lower
and, therefore, closer to the initial amplitude at a given energy. A transi-

tion from a regular oscillation regime (with conservation of symmetry) to a
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Figure 4.5: Snapshots of oscillator energies e; versus oscillator number ¢ at
successive times, illustrating the dynamics of relaxation from an initial state
around the nearest equilibrium state. The dashed line shows the profile of
the equlibrium envelope solution with the same initial energy and symmetry.
The case of regular oscillations without breakup of symmetry at low energy
E = 0.65,n = 1; profiles of E; are shown at ¢t = 0 and ¢t = 1800 s which
correspond to the initial state and maximum of deviation of the envelope
function from the initial state.

breakup regime (with change of n) has a threshold depending on the initial
amplitude or, equivalently, the energy of the initial state. The transition
energy Fy,. depends on the value of n of an initial normal mode. Numerical
results show that the transition energy Ej,., starting from a normal mode,
increases with n, approximately as n?, provided n is not too large. This

dependence can be explained qualitatively with the use of the nonlinear
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Figure 4.6: Snapshots of oscillator energies e; versus oscillator number ¢
at successive times, illustrating the dynamics of relaxation from an initial
state around the nearest equilibrium state. Illustration of the symmetry
breaking at higher energy, £ = 1.29, n = 1; the two distrubutions shown
are the profile having initial symmetry at £ = 1000 s and the transition to
the symmetry n = 2 at ¢t = 2000 s.

parameter w which gives a measure of the difference between strongly non-
linear and almost linear profiles of the envelope solutions. If w ~ 1 the
difference is of the order of one also, Ay ~ 1),,, which roughly corresponds

to the transition from a regular to a breakup regime. From the above it

follows that vy, oc n and E,, o n®.

These conclusions are illustrated in Fig. 4.5 and Fig. 4.6 where snap-

shots of numerical results obtained at low energies and n = 1, initially, are
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given at two times. In Fig. 4.5 the case of regular oscillations with n=1
and E = 0.65 is shown. The energy of the individual oscillators are plotted
versus ¢, with the equlibrium profile marked with a dashed line; the period
of oscillations is 7' = 4000 s. This initial state is close to the transition to

the breakup regime.
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a

Figure 4.7: The case of the regular oscillations with the initial conditions
E=1 n=2att=0andt = "700s. The dashed curve gives the equilibrium
profile.

The case of a symmetry breaking oscillation for n = 1 but higher energy
E =1.29 is shown in Fig. 4.6, where a periodic transition to the symmetry
n = 2 is observed; the period of oscillation is T ~ 4500 s. A similar

situation takes place if the initial normal modes are taken for n = 2, as
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Figure 4.8: The breakup of the initial symmetry n = 2 and transition to
n = 4 in the case of E' = 10; snapshots correspond to (1) t = 0, (2) t = 200 s
and (3) ¢ = 1000 s.

shown in Fig. 4.7 and Fig. 4.8. The regime of regular oscillations is shown
in Fig. 4.7 at an energy E = 1, with a period of oscillations T = 1350 s.
For initial energy £ = 10, symmetry breaking is found as illustrated in Fig.
4.8. The energy Ej. at which regular oscillation regime for n = 2 makes a
transition to the symmetry breaking regime, with n = 4 appearing, is about

E,. ~ 2.6 which is in a good agreement with the estimate Fj,. o n?.
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CHAPTER 5

BREATHER COALESCENCE

After a set of chaotic breathers have been formed, on a short time scale, by a
modulational instability or breakup relaxation, the breathers coalesce, on a
longer time scale, into a single chaotic breather. This process has been well
doccumented, numerically [14, 18, 19], and the process has been studied in
more detail in [22]. In fact, the physics is difficult to understand completely,
and quantitative comparison of theory, as developed in [22], did not agree
with the most detailed numerical results [19]. Our approach will be to first
follow the overall calculation program from [22], but extended to include
larger amplitude breathers where numerics can be conveniently carried out;
then to examine, numerically, the various assumptions that enter into the

calculations to see if theoretical estimates can be improved.
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5.1 Analytical Estimates

The basic physical notions are that some number of chaotic envelope
breathers are formed, related to the fastest growing mode of the modula-
tional instability, initial conditions, and relaxation process. These breathers
are moving, in the manner of their low frequency soliton cousins, and there-
fore collide with one another. Since the breathers are not exact nonlinear
solutions to the underlying equations, they interchange energy in the inter-
actions, and also take and lose energy against existing background modes.
In a restricted situation, this process has been described theoretically [24],
showing that energy is on average transferred from smaller to larger struc-
tures. The end result would then be a single large structure. To estimate

the time scale for the coalescence, the time scale 75 is constructed as [22]

R (5.1)

B np O Up

™TB =X~

where v is the breather velocity, and the mean free path [ is related in the
usual way to the density of breathers ng and the effective cross-section for
absorption of colliding breathers o. The calculation in [22] proceeds from
equation (2.15) (without a* terms) in the form of Hamiltonian equations

for W(z,t) and ¥*(x,t) introduced through an amplitude function similar

47



to (4.1) but in a complex form

Vi, t) =5 (W(a, t)e ™ + 0 (a, 1)) (5.2)

1
2
Droping the terms with the second time derivatives (¥ < w W) and us-
ing the rotating wave approximation (RWA) yields canonical Hamiltonian
equations

OH . 0H

Wl = —— — i = — :
iw S0r iw 50 (5.3)

where H is defined by ‘H = [ Hdx with a Hamiltonian density

H = —% {I\IJIF - %mzz? —6 B [U["+6 B[ WP0,[” + %(qﬂw*? - qﬂm*?)]}

(5.4)
Equations (5.3) describe slow variation of the envelope and they have the
integrals of motion [24]

i

H=[Hiz, P= 2/(@;_\1/*%)61:5, N= [P (55)

the energy, momentum and number of quasi-particles, respectively. These
results are then used to estimate vy in (5.1) from the defining quantities
in (5.5), which is evaluated in [22] within the approximation of a small

amplitude traveling solution, with N — oo,

exp( ikx — it )

U(r,t) = ¢mcosh[m¢m (x —vp t)]

(5.6)

Expression (5.6) is not an exact solution to (5.3) but satisfies these equations

for a reduced Hamiltonian (5.4) in which the second term and last three
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terms are droped. In this approximation €2 is the solution to the dispersion

relation 2 = (3 3/2)¢?, — k?/4 while the wave vector
k=—-vp (w+Q) ~—-2uvg (5.7)

The velocity vg plays role of the group velocity of the wave packet. Equa-
tion (5.7) is equivalent to the usual relationship vg = 09/0k and defines
k as a function of vg. The value of vg by itself is not defined in this ap-
proach and is considered as a free parameter. To define the values of vg
an additional argument is used in [22], that due to the interaction of quasi-
particles trapped inside the breather quasi-equlibrium values of k£ and vg
are established, for which the Hamiltonian, 4 = 0. In analogy with the
classical oscillator this statement was called a “virial theorem”. Applying

this theorem vy was found to be a linear function of the amplitude

o5 = /B/2 ¥m (5.8)

Note that k£ postulated in (5.7) is not equal to k,, obtained in (4.8) from the
fastest growing mode of the modulational instability. Instead, the reduced
form of the Hamiltonian (5.4) gives (5.6) as an exact traveling solution, for
which the virial theorem applied to the integral in (5.5) then gives (5.8)
and finally from (5.7) i have, k& = /28 t,,, which scales like, and is
within a relatively small numerical factor of, k,, = /123 1,,. Continuing

the argument in [22] the density of breathers ng, as obtained from the
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modulational instability at small amplitude, is

np =~ kmas / 27~ (3 )2 b /3 (5.9)

and o is taken from a Born approximation for weak scattering to have

proportionality

o o </Uz~m d.r>2 x (/;b1 Wb d.r>2 o (92 d)? o g2 (5.10)

Substituting these scalings in (5.1) leads to the scaling 75 o €z* where
eg = FEp/N is the energy density of the breathers. Recent numerical
investigations of the time scale for coalescence, in an energy range that is
easily accessible numerically, produced the scaling for the time required to
obtain a single CB [19]

TR X € (5.11)

in contradiction to the small amplitude result (more precisely 75 o« E !
since N was held constant).

Since numerical treatments mentioned above were mostly done for rela-
tively large energies, the low amplitude scalings (5.8)-(5.10) are not applica-
ble to this case and have to be extended to high amplitudes. I first reconsider
the concept of breather velocity for high amplitude. As described above, the
reduced equations (5.3) based on the Hamiltonian (5.4) without the second
and last three terms, have an exact solution corresponding to the moving

breather given in (5.6). However, one can see from (5.6) that the width of
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the reduced breather tends to zero when its amplitude increases indefinitely
while the full solution in (3.16) for a stationary breather describes a realistic
profile which has finite width at any amplitude. This problem raises the
questions whether a nonreduced form of Hamiltonian equations (5.3) admits
moving breather-like solution or whether the terms, including derivatives,
will lead to the solutions with zero vg. To answer these questions i find,
below, an exact solution for a moving breather which satisfies the full a?
order envelope equation (2.15).

To analyze a moving breather, i will use (4.2), (4.3) and choose solutions
in the form ¢(x,t) = q(z — u t), ¢(x,t) = ¢(x — ut). Derivatives of these
functions with respect to their arguments £ = x — ut, are introduced as ¢’
and ¢'. Substituting these forms into (4.2), (4.3) and taking into account
that ¢ = —u ¢, ¢, = —u ¢ , yields two coupled ordinary differential

equations for ¢ and ¢
q (1+u?+368¢%) ¢" +2¢ (1 +u*+6B¢*)¢ =2 uw (5.12)

(1+u”)g"+ (4 w’) ¢+128¢°+984(q ¢')' +2wug'q— (¢')*(1+u’+68¢%)g = 0
(5.13)
Equation (5.12) is linear with respect to the first and second derivatives of

¢ and therefore has an exact solution (without singularity at ¢ = 0)

u w

- 0.14
¢ 14+ u?+ 38q¢? ( )
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Subsituting (5.14) in (5.13), multiplaying by ¢’ and integrating over £ yields
a first integral

w2 u2

(1+ u?+38q¢?)

(14 u? +98¢%) ¢ + <4w2+ > ¢ +6B¢* =0 (5.15)

where the constant of integration is chosen to be zero to provide zero bound-
ary conditions at infinity. The frequency of the moving breather depends
on its amplitude and velocity and can be obtained from (5.15) applied to

the point £ = 0 where the amplitude ¢(§) reaches its maximum, g,

2 9 ’112

Making use of this result, (5.15) can be rewritten in the form of an energy
conserving Hamiltonian h = ¢"2/2+W where the effective potential energy
W is given by

3 20,2 2 u?
QBqQ(Qm q)Q ; 3,8q2+1— ;
(1+98¢* + u?)(1+ 38¢* + u?) 1+ 383¢2,

(5.17)

W(qa qm, U) = -

An analysis of the expression in square brackets shows that if the speed of

the breather is not too high,
u<(1+38q,)" (5.18)

the effective potential energy is negative at 0 < ¢ < ¢,,, and graphs of W (q)
are similar to the curve shown in Fig. 4.1 for the case C; = 0. Solving for ¢'

from (5.15) and integrating over ¢ yields the breather amplitude ¢(¢) which
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looks similar to the profile of the standing breather (3.17). If the inequality
(5.18) is not satisfied, then the effective potential energy (5.17) becomes
positive in some vicinity of ¢ = 0, when (1 +38¢2)"/? < u < 1+ 38¢%; it
is positive along the entire interval 0 < ¢ < ¢,,, when 1 + 33¢2, < u. In
both cases there are no trajectories corresponding to breather-like solutions
so equation (5.18) is a necessary and sufficient condition for the existance
of a moving breather with arbitrary amplitude.

The new exact solution represents a generalization of the previous so-
lution (5.6), (5.7) to the case of high amplitude breathers. The important
result is the dependence of £ on x and ¢ described by (5.14). The wave
vector k = ¢' has approximately the same value as given by (5.7) in the
tail zone of the breather and sharply decreases near the peak dropping
down to 2u/(33¢?). Although the new solution is an exact solution to the
full a*-order equation (2.15), the value of velocity is a free parameter with
some weak restriction (5.18). Similar to the calculation of vp in the small
amplitude case (5.8), i make use of the virial theorem based on (5.4) to
estimate the effect of large amplitudes on breather velocity. Expressing W
and U* in (5.2) in terms of ¢(§) and ¢(§) and substituting into (5.4) gives

a Hamiltonian density as a function of ¢(§) and k(&) = ¢'(§)
1o 2 L 2 1
H(gm, u, &) = =5k ¢ (1+30¢°) = 5¢"(14+96¢°) +35¢" (5.19)

The second term in (5.4) represents the a* term (1/24) 1,44, in (2.15). Since
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solutions (5.14) , (5.15) were obtained from a reduced a? version of equation
(2.15), this term is not included in (5.19) either. It is possible to evaluate
the first integral in (5.5) and formulate the virial theorem, H( ¢,, ,u ) = 0,

by using the identity

H = /H de = /H dg/q (5.20)

Vg

¥

Figure 5.1: Dependence of the breather velocity vg on its amplitude ,,,
obtained from the virial theorem. The horizontal line shows asymptotic
value of vg and v, — oc.

The result after some algebra and a numerical integration over dg, gives

the velocity u = vg as shown in Fig. 5.1. For low amplitude the velocity is
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in agreement with (5.8) obtained with the use of (5.6), while for high ampli-
tude we see that vg becomes asymptotically constant. The remaining quan-
titives that are required to obtain the scaling (5.1) at high amplitude are
obtained in a straightforward way. Taking the wave number of the fastest
growing large amplitude mode, from (4.9), we find that ng o k4, = const,
independent of ¢,,, which is consistent with the asymptotic assumption of
vg = const if we admit the above mentioned relationship between k and
k. From the asymptotic large amplitude expansion of 7, in (3.21), we
have 1, oc E'* (with n independent of 1, and rougly half the energy
in the proto-breathers). Performing the integration in (5.10) for the high

amplitude case when the width of the breather d ~ 5 =const, we find

o x Yp x E (5.21)

Combining the results of vz and ng independent of initial E, with (5.21),
in (5.1), this gives, at the start of the coalescence, that 75 o« E~! I must,
however, follow the time evolution of the caolscence process until a single
breather is formed. To do this we note that the time constant is governed
by ng'(dng/dt) = npovp since np decreases as Eg' and o increases as
Eg, that is, the total energy in the breathers remains nearly constant, then
ngo = const during the coalescence. As found numerically (see below)

vp is relatively constant during this process, and thus we conclude that
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ng'(dng/dt) = 1/7, a constant, during the decay. Thus the final propor-

tionality for the scaling of coalescence, assuming Fp x F, is

g B (5.22)

Comparing (5.11) with (5.22) we see that the asymptotic time scale for
coalescence has the same energy scaling as the numerical coalescence time
at intermediate energies. This is somewhat surprising, as the numerical

result lies between the low energy and high energy asymptotes.

5.2 Numerical Results

To investigate the validity of my various approximations i perform nu-
merical calculations on the discrete oscillator chain. In this way we not
only check the approximations that are required to obtain solutions to the
nonlinear envelope equations, but also take into account discreteness effects
which becomes increasingly important at short wavelengths. I first enquire
if the decay is characterized by a single time constant, i.e. if the total num-
ber of breathers Ny obeys (1 / Ng)(dNg / dt) = 1/ 7, aconstant. Taking
typical cases of initial energy £ = 20, 50 in mode v = 120, i plot In N vs
t, in Fig. 5.2 and Fig. 5.3, respectively. After an initial short period of the
modulational instability, the resulting decays are straight line, indicating

the constancy of 7.
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Figure 5.2: Numerical dependences of the number of breathers, In Ng(t),
versus time. The straight line curves indicate the constancy of the decay
time 7 during the coalescence from 8-12 breathers to two breathers. The
final coalescence to one breather has less statistical accuracy. Initial energy
E =20, n=9.

This constancy of 7 in the decay process was found to hold well for initial
energies 20 < E < 100, which is a typical intermediate energy range. At
higher energies there is a somewhat longer time for the final coalescence
from two breathers to one. Using results like those in Fig. 5.2 and 5.3 the
results in Fig. 5.4 are obtained, in the range 20 < E < 250. A straight line
gives a power law fit to the coalescence time 75 vs energy, with a best fit
giving 75 oc E~1'2. This is almost the same as the scaling of 753 oc E~11?

in [19] using a somewhat more qualitative criterion for 75. Note that 75 is
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Figure 5.3: Numerical dependences of the number of breathers, In Ng(t),
versus time. The straight line curves indicate the constancy of the decay
time 7 during the coalescence from 8-12 breathers to two breathers. The
final coalescence to one breather has less statistical accuracy. Initial energy
E =50, n=9

not the same as the time constant 7. Typically there are 8-9 initial proto-
breathers which coalesce, with the time 75 being the time necessary for
a single chaotic breather to be established. Since in all cases the initial
conditions have most of the energy in mode 120, the 8-9 initial peaks tends
to be a strong initializing effect for the proto-breathers, as already discussed
in Chapter IV.

A further confirmation of our picture of the coalescence process is seen in

Fig.5.5 and Fig. 5.6. In Fig. 5.5, for the case of E = 20, the motion of the
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Figure 5.4: Numerical results illustrating the dependence of the decay time
In 7 versus initial energy In F obtained from results at various energies as
described in Fig. 5.2, 5.3.

largest peak is followed. During the initial stage of proto-breather formation
the motion is not well defined as early unstable motion and collisions do
not conserve a single proto-breather having the maximum amplitude. At
time of 10* s the largest breather is established and grows in energy with
associated increasing velocity. The velocity

at relatively large amplitude then remains fairly constant in the range
2x 10" s <t <4x10%s, after which time Fig. 5.2 indicates the existance
of a single dominant breather. As seen in Fig. 5.6 the energy of the largest

breather is continuing to grow, statistically, during this time. For 4 x 10*
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Figure 5.5: Time dependence of the oscillator number i,,,, defined as the
position of the oscillator having a maximum energy in comparison with all
other oscillators at a given time t. After 10 s, when a largest breather is
established, it shows the position of that breather.

s <t <10°s, in Fig. 5.5 the single chaotic breather gradually slows down
in a somewhat uneven fasion. The explanation of this effect is not within
the envelope theory but can be quantitatevely understood by two effects,
the well known pinning effect due to the discreteness [18], and the continual
interaction with background modes containing a total energy of the order
of the breather energy. As seen in Fig. 5.6, during this period the main
breather energy is growing slightly. The breather is taking energy from high

frequency modes with similar symmetry and giving energy to low frequency
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Figure 5.6: Time dependence of the maximum energy e;  of the oscillators
described in Fig. 5.5. After the largest breather is established it corresponds
to the energy of the oscillator at the peak of the breather.

modes that do not have this symmetry. As described previously [19] and
will also be developed in Chapter VI, the breather will decay at longer
times, as energy continues to be transferred to low frequency modes and
equipartition is approached. Similar dynamics occurs at higher energies,

but more rapidly so that the phenomena are not as clearly observed.
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CHAPTER 6

BREATHER DECAY

In the usual picture of breather stability, the physical mechanism by which
the breather loses stability is that the breather frequency becomes resonant
with a linear normal mode [15, 16, 17]. This explanation is not directly
applicable to my problem as the breather frequency is higher than the high-
est mode; e.g. for E =50 ( = 0.1,N =128 ) the CB has a frequency
wp = 2.62 while the highest mode frequency is €2, ~ 2. However, we know
this breather is unstable (a CB), as it must have been formed in the chaotic
portion of the Hamiltonian phase space, since it was formed from a few ini-
tial modes.Within the usual theory the process then becomes quite subtle,

as it depends on the relatively small continuous spectrum of the chaos.

Although the dominant structure is the CB, the mode spectrum, in
which the CB can be decomposed, plays an important role. For energy
transfer from low frequency to high frequency modes it was shown that the
stochasticity developed in low frequency beat oscillations could transfer en-

ergy to the high frequency modes via the Arnold diffusion mechanism. The
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key requirement for energy transfer on a time scale that is not exponen-
tially slow is that the beat oscillation frequency be as high or higher than
the mode (or beat mode) to which the energy is being transfered [9]. In
a subsequent paper [20], it was found that the scaling with energy density
of the time to reach equipartition can be predicted from that mechanism.
The proportionality 7., (low to high) oc (E/N)~? was predicted and con-
firmed numerically. In [19] the same formalism has been used to numerically
predict the scaling T,, (high to low) o< (E/N) 2. However, the predicted
estimate of the time to equipartition was nearly two orders of magnitude
shorter than the numerical result. Our current study of breather dynam-
ics has revealed that the method was not applied correctly in [19] when
the dominant dynamics is the breather, rather than the normal modes. As
stated in [19] “We might expect a significant underestimate of T,, because
i am not explicitly taking into account the effect of the CB”. In fact, re-
examining the beats in the high frequency normal modes indicates that the

beat frequency is given by

Qp=wp — O (6.1)
i.e. the difference between the frequency locked to the breather and the
background free normal modes. The interaction is, of course, with the high

frequency normal modes with the breather symmetry, and so we can take

Qp ~ 2. For E=50 with wp = 2.62 we find, in Fig. 6.1, the dominant beat
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frequency Qp ~ 0.6, which is close to the value Qp ~ 0.62 given by (6.1).
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Figure 6.1: Time dependence of the energy of normal mode E; for j = 121

and 7 = 122 during the time interval 50000 s< ¢ < 50050 s when a single
chaotic breather is well established (E = 50, n =9).

The key assumption in the calculation is to require, for fast Arnold

diffusion [9], that

Oy > 60 (6.2)

where 6€2; is the spread of mode frequencies to which energy can be trans-

ferred. For transfer to low-frequency modes

1
50 = % (6.3)
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where 0l is the number of low-frequency modes which are taken to cor-
respond one-to-one with high-frequency modes, 0k , o6l = dk. To es-
timate the energy transfer i transform the Hamiltonian (2.3) to normal

modes, using (2.8) and (2.9), and then introducing the canonical action-

angle variables ( I, ¢ ) through the transformation Q; = /2 I; / ©; cos ¢,
and P; = /2 I; Q) sin¢; we obtain

B - y
H = ; lej + <8N 18 i’j%’lG(Z,j, k}, l)\/QZQ]QleIlIJIkIl G’I’Ig(ljk)lX64)

where ang(ijkl) = cos ¢; cos ¢; cos ¢y, cos ¢. The coeflicients G, as calcu-

lated in [3, 4, 5, 6, 7, 8, 9] are

Gi,j k1) =S Bli+j+k+1) (6.5)

P
where P represents the eight permutations of sign of j, k£ and [ and the
function B(z) takes the value 1 if the argument is zero, -1 if the argument
is £2(NN + 1), and zero otherwise. The selection rule (6.5) follows from the
quatric nature of the coupling. Taking the derivative of H with respect to
a high frequency angle, we obtain energy transfer from any high frequency

mode to all accessible low frequency modes in the form

dF;

The quantity C}dl is reduced from the quartic sum by the following. The

derivative reduces the sum by one index, and the selection rule (6.5) by
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a second index. The sum runs over some (§1)? modes. Assuming every
quartic term in this sum is typically of the same size and taking the phases
to be random, then the effective number of terms is C;6l where C; was
estimated in [20] to be C; = 1/4. The quantity C; is an efficiency of energy
transfer by the Arnold diffusion mechanism, which must be less than 1/2
(see [1]) and we take C; = 1/4 for definiteness. Note that both factor C
and C; were omitted in [19] which contributed to the underestimation of
the equipartition time in that thesis. However, my main reworking of that
calculation is a new determination of 6/ from (6.2) and (6.3) using 5 from
(6.1).

From (3.20) we calculate Fg(1,,) and from (3.8) we approximate wg,
both for n = 1 (a single breather). From these results, and using (6.1) we
obtain a graph of Qpg(Eg) as given in Fig. 6.2 on log-log scale, which we
compare with numerical results for €25.

We see that over the main range of energies investigated, we find, approx-
imately, Qp o Ep (slope of unity) and furthermore we have an approximate
value Qp ~ 0.28Fg. Substituting this, in (6.2), with the equality, and the

result in (6.3) we have

N
5l==—102p Ep (6.7)
T

Since, within my approximation, dE;/E; = dEg/Ep, (6.6) can be rewrit-

ten,

66



1 155 2 2.5 355 £ 4.5

3
In(Eg)

Figure 6.2: Theoretical curve and numerical points illustrate the depen-
dence of beat frequency, In {2z, on energy, In Eg, indicating a nearly linear
proportionality in the energy range investigated.

dEg
B

=02 6 Cj Cl Qj El dt (68)

2=

As in previous work we integrate from Eg(initial) to Ed/N, where d = n,()imt)
is the initial number of oscillators in the breather, and E; from zero to E/N.

Using the simplest assumption that Ej(t) = (¢ / T,,) E/N, a diffusive

process, and taking d ~ 5, we obtain

807 [ N\
Ty~ <B_E> (6.9)

where i have substituted C; = C; = 1/4 and €; = 2. I have obtained the
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scaling T,, < € ?, as found numerically in [19]. For 8 = 0.1, N = 128 and
E =50, T,, ~ 3.3-10% This is about a factor of five shorter than the time

of T,, ~ 1.6 x 10° s reported in [19]

Iose
0.8
[

0.7' ..-..l'....."-'

A i . . T
100000 200000 300000 400000 500000

Figure 6.3: Time dependence of n,s.(t). The horizontal lines are theoretical
asymptotes

There are various arguments to conclude that we have somewhat un-
derestimated the time to equipartition. Particularly, we have not explicitly
considerd the complicated process, at intermediate times when the principle
CB has been formed but not decayed, and is transfering energy from high

frequency modes, that are not part of the breather, to low frequency modes,
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Figure 6.4: Time dependence of n.s¢(t). The horizontal lines are theoretical
asymptotes

using the breather as a catalyst for the transfer. To see these effects i re-
peat, in a slightly different form from [19], computations of n,s. and n.yy,
given in Fig. 6.3 , 6.4, for E = 50, over a time scale in which the various

longer time scale dynamical processes can be seen.

The coalescence time period is seen for ¢ < 2 x 10* s during which
Nese 18 decreasing rapidly. This is followed by a period (At ~ 10° s) in
which a single breather is first increasing and then decreasing slowly as
energy is transferred from high frequency modes to low frequency modes.

Finally there is the more rapid increase in n,,., during which time the
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breather energy decays, until equipartition is reached at roughly the time
t ~ 3 x 10° s. An average over 10 initial conditions gave the value of
T.q > 1.6 x 10° s, reported in [19]. The equipartition level at n,. ~ 0.7 and
nepr =~ 0.6 can be explained by fluctuations, as described in [12] and [18].
There are some subtlties, not reported in those references, which i describe
in Appendix D. I have continued the numerical calculation to ¢t = 107 s and

find the equipartition values to be maintained very closely.
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CHAPTER 7

CONCLUSIONS

A chain of equal masses coupled to nearest neighbors by nonlinear springs
has a very interesting dynamics, with quite different behavior depending on
whether the energy is initially in the low or high frequency part of the al-
lowed spectrum. In particular, the Fermi-Pasta-Ulam (FPU) system, with a
quartic hard spring nonlinearity, has been extensively studied. Most of the
investigations, both theoretical and numerical, have taken the initial condi-
tions to be in a low frequency linear mode or modes in which neighboring
oscillators are mostly in phase. The process by which a resonant interaction
of a few low frequency modes can lead to local superperiod beat oscillations
that stochastic, transferring energy to high frequency modes by diffusion,

has been well studied.

In contrast, if the energy is placed in a high frequency mode or modes, for
which neighboring oscillators are primarily out of phase, a more complicated
dynamics ensues. High frequency mode initial conditions have phase sym-

metry of neighboring oscillators close to that of a localized exact breather,
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but have a different amplitude profile. The resulting dynamics consists
of three stages. First there is an initial stage in which the mode breaks
up into a number of breather-like structures. Second, on a slower time
scale, these structures coalesce into one large unstable structure, called a
chaotic breather (CB). Since a single large CB closely approximates a stable

breather, the final decay stage, toward equipartition, can be very slow.

Considerable insight into the behavior of a nonlinear oscillator chain,
starting from high frequency initial conditions, can be obtained by intro-
ducing an envelope function for the displacements of the oscillators. The
initial conditions for the envelope only contain significant long wave length
perturbations. For the envelope function an expansion is then possible to
obtain a nonlinear partial differential equation (PDE) which approximates
the behavior of the discrete system. Low-order expansions of this type pro-
duce PDEs that have integrable solutions in the form of envelope solutions,
analogous to the solutions produced from low-frequency initial conditions.
However, initial conditions chosen to be close to a high frequency mode of

the linear system, give envelope profiles far from those of breathers.

For the quartic FPU chain with fixed ends i have obtained PDE’s for
the envelope function of the discrete chain, Taylor expanded to fourth order
in the separation between oscillators. The resulting equations have been

solved to obtain nonlinear periodic structures similar to isolated breather
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solutions. The relationship between structure amplitude and width have
been obtained, showing that the width decreases with the amplitude at low
amplitude and becomes asymptotically constant at high amplitude, analo-

gous to the behavior of isolated stable breathers.

I have examined the stability of the nonlinear structures to perturba-
tions. The analysis becomes complcated due to spatial variations. However
a local analysis of the growth rate of the modulational instability indicates
that, for wavelengths which satisfy the Taylor expansion, the perturbations
convect away faster than they grow, thus effectively stabilizing the modes.
This result is in a contrast to the highest mode with periodic boundary con-
ditions (m-mode), which has a uniform amplitude envelope solution which
becomes unstable at a particular energy. For energies sufficiently low that a
normal mode initial condition is relatively close to the equilibrium, a linear
stability analysis is reasonable. In this case the most unstable uniform ini-
tial distribution is below the stability boundary, and therefore stable. The
normal mode initial conditions at intermediate or high energies are far from
the nonlinear equilibria with the same symmetry , and therefore subject to
large amplitude relaxation oscillations. Underlying stability considerations,
and the proximity of equilibria with other symmetries, lead to breakup of
the initial symmetry, if the energy is sufficiently high. The number of proto-

breather peaks established in this process, starting from a symmetry of a
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few initial peaks, is usually larger than the initial number of peaks, but
depends on the energy. The particular case studied in [19], and also in
this thesis, of n = 9 (v = 120) led to resultsof 8-12 proto-breathers in the
energy range 20 < E < 200. This result can be qualitatively understood
by a balance between a minimizing of the oscillation amplitude within a
peak with a tendency for the peaks to remain isolated. The one situation in
which the modulational instability theory can be applied to spatially vary-
ing equilibrium profiles is for an initial n relatively large but at not too high
an energy. In this case the instability wavelength is long enough that the
forces driving it can be averaged over a number of peaks. The uniform am-
plitude instability theory predicts the k-value k,, o< /5 < ¥?(z) > and the
growth rate, s,, « 3 < ¥?(z) > where the spatial average over x replaces

2 . as described in Chapter IV. At high energies k,, = 1.23 such that the
predicted wavelength for maximum growth is comparable to the breather

width and therefore the averaging is not valid.

After a set of quasi-stable proto-breathers are formed, they move slowly
in random directions, colliding with one another. In this process the proto-
breathers can pass through each other or be reflected, losing or gaining
energy in the interaction. On average the large structures absorb energy

from the smaller ones, as expected from general theoretical considerations.
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The time constant for coalescence into a single chaotic breather (CB) was es-
timated in [22] from the relation 75 ~ (Np ovp) ! where Np is the breather
number, ¢ a collision cross-section for absorption, and vy a characteristic
velocity. Using the procedure, extended to higher energies, i obtained rea-
sonable agreement with the numerical scalings ofrp o E~!. Furthemore
i demonstrated that 7 = Nz(dNg/dt)~" is essentially constant during the

decay, such that 75 o 7, in agreement with my theoretical prediction.

To calculate the scaling and the time T¢, for the CB decay, to obtain
energy equipartition, i adopted a theory developed for stochastic transfer
of energy from low-frequency to high-frequency modes by means of chaotic
beat oscillations [20]. For transfer in the reverse direction the relevant beat
frequency is given by the relation Q25 = wp — ), where wg is the breather
frequency, w% ~ 4 + 68¢?2, and Q, ~ 2 for a high frequency mode.
Using this scaling and the theoretical relation between E and t,,, i predict
that T,, oc € 2, as found numerically for varying F and constant N, and
furthermore were able to calculate a value of T;, for £ = 50 to within
a factor of five of the numerical value. I could also qualitatively explain
the rather longer times found numerically. The numerical equipartition
values of n,,. ~ 0.7 and n.sy ~ 0.6, for oscillators and modes, respectively,
agreed with the analytic values and furthermore remain quite constant for

numerical integration times a factor of 10 longer than required to first obtain
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the equipartition values.

I conclude that the general process, by which the energy initially placed
in a high frequency mode reaches equipartition among modes, is under-
stood. The time-scales for the longer-time processes can also be calculated
, approximately. The physical mechanism explains why the transfer of en-
ergy from high frequency to low frequency modes is slower than the reverse
transfer. It also sheds light on the interesting question of whether nonlin-
ear chaotic process will tend to create coherent localized structures. The
answer, at least within the context of this study, is that such localized struc-
tures can form transiently , but the ultimate most-probable state is that of
equipartition among the system modes. I do not address the question of
whether long-time Poincare recurrances can occur in such nondissipative
systems, but any such recurrances in high-dimensional systems would be

beyond any numerical investigation time.
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APPENDIX A

ASYMPTOTIC EXPANSION OF I(Y)

Expressing (3.11) in terms of y = 63¢?2, and making straightforward trans-

formations yields

2 [m/2 do 18y (72 da sin’« 1
I(’I“, y) = _/ N + / -2
mJo Vsina + r? ™ Jo Vsin?a + 12 (\/1+9ysin2a + 1)
(A1)

Applying an asymptotic expansion at r — 0 for the first integral and putting

r = 0 in the second one gives

2 4 18y (7/2 da sin
Iry) = = I~ + T/0 (A.2)

m V14 9ysin®a + 1

After a few subsitutions the integral is calculated analytically yielding asymp-

totic expression for I(r,y)

9y
9y +1

2 4 6
I(r,y) = — In — + ﬂarcsim
m r m

- %ln(Qy—I— 1) (A.3)
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APPENDIX B

ENERGY OF THE NONLINEAR ENVELOPE SOLUTIONS

Expression (2.3) for energy H can be rewritten in terms of envelope function

ilt) = (=1)" g;(t):

N4+1 1 .9
H=7Y Q¥+ VP + it + g( Vi 4 BYL U 290 i+ 2 i )
1=0

(B.1)

Substituting Taylor’s expansion (2.14) and collecting terms proportional to

different powers of a yields:

H=—/O(N+1)a d-r{%w? + 207 A B +a (P + T B YN +
a2
2
3
T Ya + B (6% 03+ T ¥ + 2707 s )] +

[ Ve + B (TP e + 9 *Y2)] +

4

7 [0 Carna+ B (T Y + 27 6202, + 36 1 02 s + 36 U7 vy )]}

(B.2)

Introducing the dimensionless variable © — z/a, performing an integration

by parts and taking into account boundary conditions ¥(0,t) = (N +
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1,t) = 0 yields

H = S [0200) — Y2N + 1]+ 5 [0t (0) — Githea (N +1)] +
w [T (S A L 68 g
o (025 (12 602, +6 o2 )]}
(B.3)
Applying this expression for the harmonic dependence 9 (z, ) = () cos wt

and averaging over time in accordance with cos®wt = 1/2, cos®wt = 3/8

gives

1 1
1 /N+1
A R e R R L R
Jo
1
tog 200+ B (18 P05, +9 ¢ 47 )]}
(B.4)
Substituting (3.16) into (B.4) and ignoring terms which originate from
the forth order a* terms yields equation (3.20) for the energy of the system.

For the case of a strongly nonlinear envelope, putting, » = 0, allows us to

express energy as

E = (2n ¢n/\/68)Z(y) (B.5)

where y = S92 and

Z(y) = /UW/2 da (1 + 9 B2 sin®a)'?((3 B2 sin*a + 2 sina) (B.6)
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The integral Z(y) is calculated exactly, giving

25 9 arctan( 3 /%)

Z(y) = —+ = 23 + 234 243 1/
(y) 24+8y+( + 234 y 4 243 y°) oW
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APPENDIX C

CONDITIONS OF VALIDITY OF a2-APPROXIMATION

Analytic results in Chapter III are based on the reduced form (3.5) in which
all terms proportional to a* and higher powers of a are dropped. I now
discuss the validity of this approach by examining (3.1) which includes all
terms of order a*. Solving (3.1) numerically and comparing results with the
corresponding solutions to (3.5) allows us to find the domain of validity of
(3.5) and, more generally, of the continuous approximation.

Comparing linear terms one concludes that the reduced linear form of
(3.1) has one additional term, (1/12)t),.,, With respect to linear equation
(3.2). Tts solutions with zero boundary conditions at x =0 and z = N + 1
have the same form as (3.3) but the eigenfrequency w is higher than given

by (3.4),

W =4 -¢+ g /12, Gn =7 n/(N+1) (C.1)

due to the factor ¢ / 12 which corresponds to the next term in Taylor’s
expansion with 7n/(N+1) <1 (j=v=N+1—n).

Despite the complexity of the nonlinear equation (3.1) it has an exact
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first integral which can be obtained by myltiplying (15) by v, and integrat-

ing over x. The result of the calculation gives

(W +4) '+ (149 B9%) (" + (1/6) Y0 Yuwe — (1/12) ¢0s”) +

+B (6 " +3 9 ¥, by, + (3/8) ") = Cy (C.2)

Choosing, C; = 0, we select the class of localized, breather-like solutions
for a chain of oscillators that is infinitively long (N — oc). The breather
envelope function has one maximum, 1,,, which is taken to be in the middle
of the chain at x = 0, which is the origin of the new reference frame, and
) — 0 at x — +oo. Applying (C.2) at z = 0, with ¢, (0) = 0, ¥,,(0) <0,

yields an equation for the eigenfrequency

W = A+6 802 — (1/12) (1 + 9 B ¥’ fue(0)

where f(z) is the normalized form of ¢(z). The result is that breather
frequency, calculated from (3.1) to order a', is less than the value (3.8),
found from the reduced (3.5) to order a?. Note that in the case of linear
modes (C.1) the a* term causes an opposite effect of an increased frequency.
After substitution of (C.3) into (C.2) the factor f,,(0) plays the role of an
eigenvalue. It is found numerically by applying a shooting method to (C.2)
and solving the boundary value problem with the boundary conditions,
(£ 00) = 1,(0) = 0. Instead of a boundary condition at infinity, these

constraints are applied at some distant points 4. This is possible due to
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the existance of analytic asymptotic solutions at x — +oo where ¢(x) — 0
and, correspondingly, all 5 dependent terms in (C.2) can be omitted. This

leads to the exponential profile for the breather tail
(r) — Cexp(—kl|x|) r — o0 (C.4)

where the rate of decay, k, is determined by substitution of exponentially

small (C.4) into the equation (C.2) with g-terms ignored, obtaining

K2 =136 + 72 B’ — faal0) (1 +98¢2) — 6 (C.5)

Expression (C.5) is valid if ( 1+ 9 8 ¢2) fu.°(0) < 72 B 2, or, equiva-
lently, w? > 4. It is worth mentioning that there exists an exact universal
relationship between w and x which is valid to all orders of a. Indeed, since
Y(z) — 0 at x — +oo, this asymptotic behavior is described by the linear
version of the basic equation (2.4). Substituting the infinite Taylor’s series
(2.14) into this linear equation and assuming an exponential law of decay

(C.4) yields the universal relation
w = 2 coshg (C.6)

This expression is based on the summation of all terms in Taylor’s expan-
sion and, correspondingly, it represents an exact result which can also be
obtained from the discreet FPU S-model.

The factor f,,(0) is used to estimate the half-width of the bulk envelope

function as A ~ |f,,(0)|7*/2, while k" describes the half-width of the tail.
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Before numerically solving (C.2) i reproduce analytic results for a breather

derived from equation (3.5). The second derivative of (3.17) at z = 0 is

fou(0) = —6 B4y, /(1 + 98¢y (C.7)

As is seen from both (C.6) and (3.2) in the a? approximation, k' =

(6 B ¥2)~Y2. The factor A, calculated from (C.7), equals £~ ' in the small
amplitude limit and becomes large, A = (3/2)/2, in the strongly nonlinear
regime, indicating that, for large amplitude, the breather envelope function

has a two scale structure.

¥

Figure C.1: Dependences of wg on breather amplitude, 1,,; the solid curves
correspond to a* approximation, the dashed curves to a? approximations.
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Figure C.2: Dependences of A and ! on breather amplitude, 1,,; the

solid curves correspond to a* approximation, the dashed curves to a? ap-

proximations.

More detailed quantitative information obtained by numerical integra-
tion of (C.2) is presented in Figs. C.1, C.2 which illustrates dependences of

! on 4, in both a? and a* approximations.

w, A and kK~

The breather profiles described by (3.17) in a* approximations and more
precise a’ results based on numerical integration of (C.2) are illustrated in
Fig. C.3 for a few typical values of v,,. Figs. C.1, C.2 , C.3 show that

4 approximations up

there is no significant difference between the a* and a
to 1, >~ 2 which can be considered as the limit of applicability of equation

(3.5) and the solution in (3.17). Analytical small amplitude approximation
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Figure C.3: Comparison of the breather profiles obtained in a? approxi-
mation (eq. (3.17) - thin solid curves); (eq. (3.18) - dashed curves) and
in a* approximation (eq. (3.1) - thick solid curves) for three values of the
amplitudes; (a) 1, = 0.5, (b) ¥, = 1, (¢) ¥, = 10.

(3.18) is in a good agreement with the numerical curves at lower amplitudes,

Um < 0.5.
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APPENDIX D

ASYMPTOTIC VALUES OF neg AND ngg. IN

EQUIPARTITION
The effective number of normal modes containing energy is defined by:
Neff = lexp { i e;In e]} (D.1)
where e; = Ej/E), are the normalized linear energies of the normal modes
B = 0,(Q + P?) (D.2)

where Ej, = 3. E; given by (2.7). Only the quadratic terms in the potential
energy are taken into account in (D.2) so that Ej is not total energy E
and not exactly conserved during the relaxation. The effective number of

oscillators containing energy

1
Nose = 77 €XP l Z e; In P;| (D.3)

is based on the normalized oscillator energies e; = E;/E which includes all

terms so that YV E; is conserved exactly

(g1 — )" + (@ —ai-0)'] (DA)
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Depending on the relative variations of energies e;;, from one mode or
oscillator to another, the values of n.ff or ny vary in the range from 1/N
to 1. The upper limit corresponds to equipartition state where all ¢; and ¢;
are the same and equal to 1/N. Numerical curves plotted in Fig. 6.3, 6.4, for
N =128 and E = 50 give asymptotic values at ¢ — oo of n.ss = 0.61 and
Nose = 0.715, which are lower than the upper limit values n,,. = nesp = 1,
as expected due to the fluctuations of energies e; ; caused by interaction
between modes (oscillators). In order to calculate the effect i introduce a

deviation de; ; from equipartition
€ij = €ij T 0€i, (D.5)

Subsituting (D.5) into (D.1) or (D.2), expanding the logarithmic function,
which holds both for modes and oscillators, as In(1 + de;/&;) = de;/e; —

(1/2)(de;/e;)? and performing the summation over 7 yields

Neff = Nose = %exp {—Nelne — Noe?/(2e)} = exp {—Nde?/(2e} (D.6)

Taking € = 1/N and making the assumption of normal statistics that
for each normal mode d¢®> = 2 (this is confirmed by calculations), gives
an asymptotic value ng. = nepp = exp(—0.5) = 0.61. This calculation
illustrates why the result does not depend on the number of oscillators if N

is sufficiently large and is in apparent good agreement with the numerical
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simulation for n.sr, but not for rn,.

For an alternative perspective, from statistical mechanics we note that
the sums on the R.H.S. of (D.1), (D.2) can be treated as ensemble aver-
ages of the function elne (if, of course, modes (oscillators) are statistically

independent)

N

1 i=N
elne = —> elne (D.7)
=1

The L.H.S of (D.7) is calculated as a mean value of eln e averaged over
accesible states of the normal mode (oscillator) which are smoothly dis-
tributed in the phase space due to energy exchange with the rest of the
N — 1 modes. They play the role of a heat reservoir while the total energy
of the combined system is conserved. In this situation a canonical distribu-
tion can be used to describe probabilities of the different states of a single
normal mode (oscillator).

For the normal modes the canonical distribution has a form

dP = 7 eXp{—]T} dP dQ (D.8)

where dP is the probability of finding the mode in the state P, (), and the

partition function 7 is defined by the normalization condition

o= [ ) i

The effective temperature of the heat bath T is chosen such that E; = E/N

with Ej; given by (D.2). Performing the integration over P and @ yields an
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expression for Z. The mean value of E; is then calculated as

1 g e B(P
7, = 2/700 [m Ey(P,Q) exp {—M}dP Q=T (D.10)

where T'= E//N is the effective temperature. Substituting these results into

the integral for the mean value of elne yields

eln e = %/Uoor In(z/N)exp(—z) dz (D.11)

Multiplying (D.11) by N and subsituting in (D.1) gives an expression for

the asymptotic value of n.ss
1 -
Nef(00) = Nexp[—N elne| = 0.6552 (D.12)

which does not depend on N. This limit is rather close to numerical value
0.61 but slightly exceeds it. The relative difference of the order of 0.08
cannot be explained by the fact that only the quadratic part of potential
energy is taken into account. If £ = 50, N = 128 then the relative value of
the quartic term with respect to the total energy of the mode is 5 E/(4 N) ~
0.01 which is too small to explain the difference observed.

In the case of oscillators the canonical distribution has a more com-
plicated form because the energy of each oscillator ¢ depends formally on
four variables p;, ¢; 1, ¢, ¢it1 (see, Eq.(D.4)). Correspondingly, the parti-
tion function and all mean values are defined by mulidimensional integrals.

Since the potential energy is a function of differences ¢; 1 — ¢;, ¢ — g1,
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the number of independent variables for integration is reduced to 3: z =
Giv1 — Qs Y= q; — q;—1 and p = p;. Correspondingly, expressions for Z, the

mean values of F;, and elne take the form

Sl Bl Ei(p, z,
Z:/, [ [ exp {M} dp dx dy (D.13)

E; Z/ / / i(p, x,y) exp {—M} dp dx dy (D.14)

elne—Z/ / / ( p””)m(W%Xp {—M}d]odmdy

(D.15)

where

! p

1
Ei(p,x,y) = =p;° + 4(3j + %) + 8(334 +y) (D.16)

2

The equations are integrated numerically. Given an effective temperature T,
the number of oscillators N and total energy E, the mean value of energy
per oscillator E; is found from (D.14). Equating Fj to its equipartition
value, E'/N, yields an appropriate effective temperature which is then used
to calculate elne. This leads to the asymptotic value of n,..(00) = 0.74

that slightly exceeds the result of numerical calculations.
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